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Abstract 

The precision of a small-domain sample estimator can be improved by estimating simultaneously its true value and sampling 
and non-sampling error components. In principle, this simultaneous estimation is superior to any two-step estimation of the 
true value and sampling error components, ignoring the non-sampling error component. In this paper, a time series model for 
state employment or unemployment is used to demonstrate the limitations of a two-step method. A cross-sectional model for 
state employment or unemployment is used to explain the advantages of simultaneously estimating a true value and the sums 
of sampling and non-sampling errors in two or more sample estimators of the true value.           
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1. Introduction 
 
Accurate estimates of employment and unemployment at various levels of geographic detail are needed to formulate good 
regional policies, such as the determination of eligibility for and/or the allocation of Federal resources, with a good 
understanding of local economic conditions. Such estimates cannot be produced from survey data collected in each small area 
because sample sizes within those areas are often either zero or too small to provide reliable estimates. If an area-specific 
sample is available but is not large enough to yield “direct estimates” of adequate accuracy, then their accuracy can be 
improved, using “indirect” model-dependent estimators that “borrow strength” from auxiliary data collected in this and other 
small areas and/or at more than one time period. On a definition suggested by a passage in Rao (2003, p. 2) indirect 
estimators might be classified as “domain indirect”, “time indirect”, or “domain and time indirect” depending on whether 
they borrow strength cross-sectionally, over time, or both. In this paper, we develop domain indirect estimators that facilitate 
simultaneous estimation of the true value and sampling and non-sampling error components of sample estimators. In 
principle, simultaneous estimation is superior to two-step estimation of these components. To illustrate the proposed 
techniques, we consider the problem of improving the accuracy of current population survey (CPS) estimates of employment 
and unemployment for 51 “small areas” consisting of the 50 United States plus the District of Columbia. CPS state estimates 
are widely used and improving their accuracy is valuable.     

 
The remainder of this paper is divided into six sections. Section 2 describes the time series models used to estimate 
employment or unemployment for the states, major metropolitan areas, and corresponding balance of states in the U.S. 
Section 3 shows the limitations of a two-step method used to estimate these time series models. The consequences of 
incorrectly neglecting non-sampling errors are given in Section 4. Section 5 uses cross-sectional estimates based on two or 
more sample estimators of state employment (or unemployment) to estimate simultaneously the true values of employment 
(or unemployment) and the sums of sampling and non-sampling errors contained in those estimators. Seasonal adjustment of 
the true values of state employment (or unemployment) and estimation of the autocovariances of sampling errors are 
discussed in Section 6. Section 7 provides an example. Section 8 concludes.       

 
2. Time Series Models for the True Value Component of a Sample Estimator 
 
2.1 Sampling Model 

                                                 
Acknowledgment. Comments by Christopher Bollinger are highly appreciated.   
Disclaimer. Any opinions expressed in this paper are those of the authors and do not constitute policy of the Bureau of Labor Statistics.   

mailto:paravastu_s@bls.gov
mailto:Zimmerman_tamara@bls.gov
mailto:mehta1007@comcast.net


Let  denote the current population survey (CPS) composite estimator of the true population value, denoted by , of 
either unemployment or employment.
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1 Let i and j index states, major metropolitan areas, or balance of states and let t index 
months. The decomposition of  into its unobserved components is   ˆCPS
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where  and  represent sampling (or survey) and non-sampling errors (such as  non-response or measurement errors),  

respectively. A value, denoted by , of  obtained from a specific CPS sample is an estimate of .    
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The annual averages of the components of a type of non-response rates for 1993-1996 and 2003 CPS national estimates are 
given in U.S. Department of Labor (2006, p. 16-4). These averages show that we cannot assume that  = 0. The methods 
in Cochran (1977, Chapter 13) might have been already tried to reduce the magnitude of . Under the current 2000 CPS 
design, the number of assigned households in monthly CPS samples for different states ranges from 700 to 5,344. These 
sample sizes are not large enough to yield  of adequate precision.

CPS
itu

CPS
itu

ˆCPS
itY 2 It is necessary to use model-based approaches to 
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The design-based approach to CPS inference treats the  as fixed quantities. Unlike this approach, the model-based 
approach to CPS sampling inference treats the  as a random sample from a “superpopulation” and assigns to them a 
probability distribution implied by a model for .
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itY 3 Since the “true” model for  is unknown, we can use one of its 
approximations in place of  used in (1) but then we should be prepared to carefully investigate whether such a use 

improves the precision of .
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probability distribution induced by the 2000 CPS sampling design conditional on , respectively. Let  and  denote 
the expectation and variance operators with respect to a probability distribution assigned to the  by an assumed model for 

, respectively (see Little, 2004, p. 547).  
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2.2 Survey Error (SurE) Model 
Suppose that  = 0 for all i and t. Then a model for  implied by the CPS design is    CPS
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where for i, j = 1, …, m and t = 1, …, iτ ,  = 0,  = 0 if i  j,  =  = 

 +  with  = between-Primary Sampling Unit (PSU) variance component of the total design 

variance of  arising from selecting a subset of all non-self-representing (NSR) PSUs in state i,  = within-

PSU variance component of the total design variance of  arising from sampling of housing units within selected PSUs of 
state i,  = the ratio of the within-PSU variance component of the total design variance of , assuming the CPS 

sample design, to the total design variance,  = ( /
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simple random sampling (design effect),  = the civilian non-institutionalized population 16 years of age and older for the 
state,  = the state sampling interval (see U.S. Department of Labor, 2006, p. 3-6) and  follows a mixed 2
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1 Here employment is defined on a place-of-residence basis, since the CPS is a household survey.   
2 We strictly adhere to Cochran’s (1977, p. 16) distinction between “precision” and “accuracy”. 
3 Rao (2003, p. 77) calls this model a linking model. 
4 The “true” model for  is an unknown function, itY 1 1,( ,..., , ,..., )

itit it it Kit K it L itY f x x x x+= , of all of the determinants of  with the 
correct but unknown functional form and without any omitted determinants or mismeasured variables. Any of its estimable 
approximations is misspecified if it has an incorrect functional form and suffers from omitted-variable and measurement-
error biases (see Freedman and Navidi, 1986).  
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autoregressive and 17th order moving average, or ARMA(2, 17), model with  = *( )m itV e *
2

,e i
σ , as shown by Tiller (1992, 2005). 

This ARMA(2, 17) model is approximated by a 15th order autoregression or AR(15) model.   
  
2.3 Linking Model 
Durbin and Koopman (2001) work with Harvey’s (1989) structural time series models. Following them, it is assumed that the 
finite population is generated according to the superpopulation model   
      =  +  +                                                                                                                                                      (3) 

where  is the trend-cycle,  the seasonal, and  the irregular component, which are treated as the unobserved 

components of .
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itY 5 All these components are assumed to be independent of each other for all i and t. This assumption may 
not be true if the decomposition of  in equation (3) is not unique. To account for this non-uniqueness, Havenner and 
Swamy (1981) assume that , , and  are correlated with each other for all i and t.          
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It is assumed that  follows a random walk model with one period lagged value of a random walk drift. Durbin and 

Koopman (2001, p. 39) call this the local linear trend model. The seasonal component, , is expressed in a trigonometric 
form to make it follow Durbin and Koopman’s (2001, (3.6), p. 40) quasi-random walk model. The irregular component, 

, is assumed to be serially independent and normally distributed with mean zero and constant variance.
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It is known that employment has a strong tendency to move cyclically, downward in general business slowdowns and upward 
in expansions. These cycles are asymmetric because employment decreases at a faster rate than it increases. The behavior of 
unemployment over time is the opposite of employment’s behavior and is called asymmetric counter-cyclical behavior. 
Montgomery, Zarnowitz, Tsay and Tiao’s (1998, p. 487) results imply that the time series models assumed above for the 
components of  in (3) may be misspecified because they may not exhibit the asymmetric cycles of employment and 
unemployment. More specifically, their results are: (i) A first order autoregressive model in first differences, denoted by 
ARIMA(1, 1, 0), that fitted the U.S. quarterly unemployment rate series for 1948-1993 quite well was not able to accurately 
represent the asymmetric cycles of unemployment during this period; (ii) An ARIMA (1, 1, 0)(4, 0, 4) model with a 
multiplicative seasonal factor, denoted by ARIMA(4, 0, 4), under-predicted the U.S. unemployment rate during the rapid 
increase of 1982 and exhibited forecasts that fluctuated a great deal more during stable periods of unemployment.
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2.4 Covariate Model 
Consider an extension of model (3) to allow one or more of the unobserved components of  to be related to corresponding 
components in another series called a covariate. The unemployment insurance claims (U.I. Claims) from the Federal-State 
Unemployment Insurance System are used as a covariate series if  represents unemployment, and nonagricultural payroll 
employment estimates from the Current Employment Statistics (CES) survey are used as a covariate series if  represents 
employment.  
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3. A Two-Step Method of Estimating the Parameters of Survey Error and Linking Models 

We call the model consisting of equation (1) without , equation (2), and equation (3) with covariates “the combined 
model”. For each i, the unknown parameters of model (2) are: the design variances, , t = 1, …, 

itu
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of AR(15) model. For each i, the unknown parameters of model (3) are the error variances of the models for , , and 

, which are four in number (see Tiller, 2005, p. 7). When the  for t = 1, …, 
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5 Tiller (2005) also allows for temporary or permanent shifts in the level of the series, { }, t = itY −∞ , +∞ .    
6 Someimes it is assumed that  follows a lower-order autoregressive process (see Tiller, 1992, p. 151).   ,itY itI
7 It can be shown that  contains a random walk component if it contains a stationary component after being first differenced d times. It is 
precisely this condition that is violated when the nonlinear models that accurately represent the asymmetric cycles of employment and 
unemployment are considered.  
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observations on the covariates, the number of the unknown parameters of (3) with covariates increases to 10 for each i (see 
Tiller, 2005, p. 10). All these parameters of the combined model are not identifiable on the basis of the available CPS 
estimates, , t = 1, …, CPS

ity iτ , i = 1, …, m, and observations on the covariates alone. Consequently, for each i, a two-step 
procedure is used: First step. For each i, the available CPS estimates ( , t = 1, …, CPS

ity iτ ) are used to estimate the parameters 
of (2) independently of (3) with covariates; Second step. Given the CPS estimates ( , t = 1, …, CPS

ity iτ ), the parameters of (3) 
with covariates are estimated, holding the parameters of (2) and AR(15) fixed at their estimated values.    
  
3.1 Survey Error Variance Estimates 
Let i and t be fixed so that the components of  in (3) are fixed. Let  be absent. Then the design variance, , in (2) 
can be estimated using the generalized variance function (GVF) (see Wolter (1985, p. 203), Lent (1991, 1994), and U.S. 
Department of Labor (2006, p. 3-6)),   
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A method of estimating the  is summarized in the following steps:    itb
1. All survey statistics are divided into several groups with model (4) fitted independently in each group. If  differs 

among the statistics in a group, then they are not consistently estimable because the number of unknown parameters 
increases with the size of the group (see Lehmann and Casella, 1998, p. 481). To avoid this difficult incidental 
parameter problem, care is taken to group together all survey statistics that follow a common model such as (4) with 
fixed i and t. This may involve grouping together the statistics with similar design effects; the same characteristics for 
selected demographic or geographic subgroups. Examples of such groupings are given in Wolter (1985, p. 209).   
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2. Let g index the statistics in a group formed in Step 1. The design variances, , are computed for 

several statistics of this group using , where , , 

,  =  + ,  is obtained by multiplying the 2000 decennial census 

estimate of between-PSU variance by the square of the ratio of the annual average of  for the current year to the 

2000 census estimate of ,  is computed from the national within-PSU design effects by adjusting for 

differences in a certain noninterview rate, see the memorandum (2007) from Khandaker Mansur, and  =  

when  = . Let  denote the estimator of . 
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3. Fitting model (4) to the data ( , ) from Step 2 gives the estimate of  for the group. The 
model fitting technique is an iterative weighted least squares procedure, where the weight is the inverse of the square of 
the predicted value of  (see Wolter, 1985, p. 207, (5.4.2)). Let  denote an iterative 
weighted least squares estimator of .  
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4. An estimate of the design variance of a survey statistic, say , for which the successive difference replication 

method of Fay and Train (1995) is not applied is now obtained by evaluating model (4) at the point ( ; ). It is 
called a GVF estimate.     
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The estimator, , obtained in Step 3 may not have any desirable statistical properties because of the effects of the errors, 

 - , and can be very imprecise if all statistics within a group do not behave according to model (4). These 
problems may get resolved if model (4) is replaced by the less restrictive model,     

itb
ˆ ( )CPS
itY g ( )itY g

     ,   g = 1, 2, …, G                                                                          (5)   2ˆ ˆ ˆ ˆ( ( ) | ( )) { ( ) (1/ )( ( )) }CPS CPS CPS
p it it itg it it itV Y g Y g b Y g N Y g= −

with  
     01 0,

ˆ ˆ( / ) CPSitg itg it it itge itg
b k N n Dδ ξ= +                                                                                                                                         (6) 



where  and  are the estimators of  and  given in Step 2, and 
,
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D itgk 0itgξ  is a random variable with mean zero 

and constant variance. Chang, Swamy, Hallahan and Tavlas’ (2000) method can be used to estimate model (5) under 
assumption (6).  Estimator (5) is imprecise, since  is an imprecise estimator of .    ˆ ( )CPS
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3.2 Survey Error Autocorrelation Estimates 
In Zimmerman and Robison (1995), the variances and autocovariances of the  in (2) are estimated from the separate panel 
(rotation group) estimates of . A panel is defined as the set of sampling units joining and leaving the sample at the same 
time. Each panel is a representative sample of the population. The CPS sample consists of 8 such panels in every month. To 
estimate model variance and autocovariances of the CPS composite estimator from the estimates of model variances and 
autocovariances of the panel estimators, Zimmerman and Robison (1995) and Zimmerman (2007) consider the following 
model:  
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where  = CPS estimator of  from panel j, 
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ijtY itY iμ  = overall mean, ijθ  = month-in-sample effect, itβ  = time effect, and 
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Let  denote  in (2) for panel j. Model (7) is misspecified if the time series models for the components of  in 

(3) are correctly specified. If this is so, model (7) incorrectly estimates  as 
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. The incorrectly estimated  cannot give accurate estimates of the parameters of model (2) 

other than  even if model (5) gives accurate estimates of . Thus, the First step--of estimating the survey error 

model parameters from design based information independently of the time series models for the components of  in (3)--
can lead to very inaccurate estimates of the survey error model parameters. If the condition, “holding the parameters of the 
survey error model fixed at their estimated values”, means the condition, “the parameters of the survey error model are set 
equal to the estimates obtained in the First step”, then the inaccurate estimates obtained in the First step can lead to inaccurate 
estimates of the parameters of model (3) with covariates in the Second step. There will be no consistency between the 
estimates obtained in the First step and those obtained in the Second step. Furthermore, the random walk models assumed for 
some of the components of  lead to a predictor of  that is unconditionally inadmissible relative to quadratic loss 
functions because the predictor does not possess finite unconditional mean. They do not provide the predictors of  with 
good conditional and unconditional properties. Brown (1990, p. 491) shows the importance of working with such predictors.  
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3.3 State-Space Form of the Combined Model      
Let { itx } be a covariate series. Let xity  = ( , CPS

ity itx )′ . Let the combined model be written in state-space form, as in Durbin 
and Koopman (2001, p. 38). Hold the parameters of the survey error model fixed at the estimates obtained in the First step. 
For calculating in the Second step loglikelihood function and the maximization of it with respect to the parameters of model 
(3) with covariates, the joint density of the sample observations, 1xiy , 2xiy , …, 

ixiy τ , implied by the combined model is 
written as  
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where it is assumed that  = 1 0( |xi xip y y ) )1( xip y  with finite mean (see Durbin and Koopman, 2001, p. 30). The truth of this 

assumption is usually unknown. For this reason, it is convenient to assume that  is distributed with density XitY

1( | , ..., 1 )xit xit xip y y y−  for all t;8 unfortunately, this assumption contradicts the assumption that 1 xi0 1( | y ) ( )xi xp y p y i=  with 
finite mean. This is because the former assumption says that under the random walk models assumed for some of the 
components of ,  does not possess finite unconditional mean for all t and the latter assumption says that  possesses itY XitY XitY

                                                 
8 Here we distinguish a random variable from its value by a tilde. For example, xity  is the value taken by the random variable 
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finite unconditional mean for t = 1. Even if it is assumed that  is distributed with density XitY 1( | , ..., 1 )xit xit xip y y y− for all t > 1, 
the assumption that  = 1 0( |xi xip y y ) )1( xip y  with finite mean cannot be true for all those data sets for which the value t = 1 
occurs at different points on the time axis.    
 
One may use l (> 0) non-stationary elements in the state vector which determines the number of observations required to 
form priors of these elements. Without this or any other initialization, it is not possible to apply the Kalman filter to state-
space form of the combined model in (1)-(3) (see Durbin and Koopman (2001, pp. 27-30, 99-104) and Maddala and Kim 
(1998, pp. 475-477)). The initial value 0xiy  is usually unknown and any assumption about it may be questioned. Incorrect 
assumptions about the 0xiy  can lead to the estimates of , t = 1, …, itY iτ , with incorrect initial values and hence with incorrect 
time profiles.    

  
4. Consequences of Incorrectly Neglecting Non-Sampling Errors 

 
In the previous section, we have considered equation (1) with  suppressed even though  is not equal to zero with 
probability 1. Adding to this equation a linking model of the  general linear mixed (GLM) model’s type for , which 
implies that  possesses finite second moment for all i and t, the best linear unbiased predictor (BLUP) of  can be 

found.
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9 This BLUP can be expressed as a weighted average of  and the regression-synthetic estimator of  implied by 

the linking model. Under certain regularity conditions given in Rao (2003, p. 117), the BLUP of  coincides with  that 

is not affected by the misspecifications in the linking model as the design variance of  goes to 0. That is, when  is 
design-consistent, the BLUP of  can also be design-consistent. This result is the basis of Little’s (2004, p. 551) statement 
that one way of limiting the effects of model misspecification is to restrict attention to models that yield design-consistent 
estimators (see also Rao, 2003, p. 148). This observation is of no use to us when  is subject to non-sampling errors, in 

which case  is not design consistent (see Little, 2004, p. 549).   
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In Rao’s (2003) terminology, the BLUP of  becomes an empirical BLUP (EBLUP) when the variance parameters involved 
in the BLUP are replaced by their respective sample estimators. A second-order approximation to the mean square error 
(MSE) of EBLUP involves three terms, as Rao’s (2003, p. 104, (6.2.31)) very elegant derivation shows.

itY

10 This derivation 
further shows that an unbiased estimator of the MSE of EBLUP to a desired order of approximation may involve four terms 
(see Rao, 2003, p. 105, (6.2.37)).  The value of the sum of these four terms obtained from a specific sample can exceed the 
value of the design variance of , showing that the EBLUP of  can be less efficient than  which is itself imprecise 
because of the smallness of the sample on which it is based. The MSE of the BLUP of  contains two terms and only one of 

these terms is smaller than the design variance of , as shown by Rao (2003, p. 117, (7.1.7)). These results raise the 
question: in what sense does the linking model for  “borrow strength” from its explanatory variables in making an estimate 
of ?  Under certain regularity conditions, two of the three terms of a second-order approximation to the MSE of an EBLUP 

of  go to zero and the remaining term remains below the design variance of  as the number of observations on the 
explanatory variables of the linking model goes to infinity (see Rao, 2003, p. 117). Thus, in the limit the MSE of an EBLUP 
of  can involve only one term that is smaller than the design variance of .
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strength from its explanatory variables in the limit as the number of observations on its explanatory variables goes to infinity 
if  is design-consistent and some regularity conditions are satisfied. This result holds even when the linking model for 
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9 Swamy, Zimmerman, Mehta and Robison (2005) extend Rao’s (2003, pp. 96-98) derivation of the BLUP from a GLM model for a 
sample estimator to take account of omitted-variable, measurement-error and incorrect functional-form (or simply specification) biases in 
the GLM model.    
10 This derivation has been extended to take account of specification biases in linking models of the GLM type in Swamy, Yaghi, Mehta 
and Chang (2006). 
11 The gain in efficiency associated with the use of Rao’s (2003, pp. 116-117) BLUP may get reduced if the linking model that provides the 
BLUP suffers from specification biases (see Swamy et al., 2005).         



itY  is misspecified, provided  does not contain non-sampling errors. It is of limited use for us because large sample 
theories of estimation are irrelevant to small area estimation and the sources of error other than random sampling variation 
given in Cochran (1977, p. 359) are present in the CPS and CES survey. There is usually no justification to ignore the 
possible misspecifications in the time series models for the components of  in equation (3) with covariates.   
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5. Simultaneous Estimation of Sums of Survey and Non-Sampling Errors and the Corresponding True Values 
 

Let us now reconsider . Suppose that an additional estimator, denoted by , of  is available. This additional 
estimator will be given by U.I. Claims data if  represents unemployment and by data from the CES survey or by 
extrapolated data from the Quarterly Census of Employment and Wages (QCEW) program if  represents employment. We 

assume that each of  and  is subject to both sampling and non-sampling errors and write  =  + 

ˆCPS
itY ˆ A

itY itY

itY

itY
ˆCPS
itY ˆ A

itY ˆCPS
itY itY CPS

itε  with 
CPS
itε  =  +  and  =  + CPS

ite CPS
itu ˆ A

itY itY A
itε  with A

itε  =  + , where the vectors, ( ,  and ( , A
ite A

itu CPS
ite A

ite )′ CPS
itu A

itu )′ , denote the 

sampling and non-sampling errors of ( , ˆCPS
itY ˆ )A

itY ′ , respectively.12 Let  denote a value of  obtained from a specific 
sample.   

A
ity ˆ A

itY

 
We now fix t and let i vary to focus on cross-sectional variations in CPS

itε  and A
itε . These types of variations in  and  

are different from their random sampling variations that are present because only parts of the population have been measured 
using some sampling designs.

CPS
ite A

ite

13 Modeling assumptions are needed to analyze the non-sampling errors,  and , and 

cross-sectional variations in the sampling errors,  and . The problem of choosing between  and  can only be 
solved if we can derive from them a single estimate that is closer to  than either estimate. We show in this section that such 
a single estimate can be found even when |  - | > |  - |.  
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itu
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5.1 Random Coefficient Regression Model 
Writing , a function of  and 1

ˆ1 ( / )A A
it it itYα ε= − A ˆ A

itY A
itε , we transform the sampling model,  =  + ˆ A

itY itY A
itε , into the linking 

model,  = . Replacing  in the sampling model in (1) by  gives the model:  itY 1
ˆA A

it itYα itY 1
ˆA A

it itYα

   ,  i = 1, …, m                                                                                                                                          (9) 
where 

0 1
ˆCPS CPS A A
it it it itY α α= + Ŷ

0
CPS CPS
it itα ε= , 

   0 00 01 02
CPS ca ca ca ca
it it it itBP HP 0α π π π ζ= + + +                                                                                                                                      (10) 

   ( ) ( )1 10 11 12 1
it it

it it

BP HPA ca ca ca c
it itTP TP

aα π π π ζ= + + +                                                                                                                                    (11) 

where BP = the black population 16 years of age and older for the area, HP = the Hispanic population 16 years of age and 
older for the area, TP = the civilian non-institutionalized population 16 years of age and older for the area, all the π s are 
fixed, the superscript, ca, of the π s and ζ s is shorthand for “regression of  on ”, and the variables, BP, HP, ˆCPS

itY ˆ A
itY ( )BP

TP , 

                                                 
12 Note that if  is an estimator of employment, then its correct decomposition is  =  + (  - ) +  + , where  is a 

“place-of-work” employment that is different from the  place-of-residence employment, , the true-value component of . To adopt 

the “place-of-residence” concept, the difference,  - , is added to  so that  =  + 

ˆ A
itY ˆ A

itY itY *
itY itY A

ite A
itu *

itY

itY ˆCPS
itY

*
itY itY A

itu ˆ A
itY itY A

itε . Mathiowetz and Duncan (1988) adopt the 
“place-of-work” concept to study response errors in retrospective reports of unemployment.   
13 Here we ignore the autocorrelations of  implied by the CPS sampling design because with fixed t and varying i,  exhibits only 
cross-sectional variation. Our purpose in this section is to model this variation in the presence of non-sampling errors. An advantage of 
having cross-sectional data alone on two or more estimators of  is that they can provide information about the sum of the sampling and 

non-sampling errors of , whereas time-series data alone on  muddle the two errors, with no prospect of estimating even their 
sum. The former result follows from the analysis of this section and the latter result follows from the analysis of Section 3.      
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and ( )HP
TP , are called “the coefficient drivers”.14 Additional coefficient drivers may be included in (10) and (11) if they are 

thought to be appropriate.  
 
We estimate equations (9)-(11) under the following assumptions: For i = 1, …, m and fixed t,  
(A1) the  are conditionally and independently distributed with mean vector 0 and constant covariance matrix  0 1( , )ca ca

it itζ ζ ′
2
ζ ζσ Δ  given the coefficient drivers.   

(A2) 0 1
ˆ( , | , , ,CPS A A

it it it it it it )P Y BP HP TPα α  =  where 0 1( , | , ,CPS A
it it it it itP BP HPα α )TP ( )P ⋅  is a joint probability distribution function     

of the variables in (9)-(11).  
 
The costs of assumptions (A1) and (A2) are considerably less than those of assumptions underlying the combined model in 
Section 3, as the following discussion shows:  
(i) Design-based inference is strictly inapplicable to situations where CPS

itu ≠  0 (see Little, 2004, p. 540). Hence model (2) 
that is needed for design-based inference is not employed, since such situations are considered in this section.  

(ii) What we have done in (9) is that we retained the sampling model (1) and avoided all the misspecifications in, and the 
identification problems with, models (2) and (3) by replacing the linking model (3) by its alternative,  = . Not 
much is known about the true model for  in footnote 4. Therefore, the correctness of any specified model for  may 
be questioned. However, the misspecifications in the time series models for the components of  in (3) seemed to us to 
cry out for alternative linking models. A careful comparison of the results produced by model (3) and its alternative, 

, might expose the weaknesses of both models.  
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itY itY

itY
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it it itY α= Y

)
(iii) The conditional independence assumption (A2) is weaker than the unconditional independence assumption, 

0 1 0 1
ˆ( , | ) ( ,CPS A A CPS A

it it it it itP Y Pα α α= α , which is false because of the nonzero correlations between ˆ( , , )A A A
it it itY e u ′  and 1

A
itα . We 

include the coefficient drivers in (10) and (11) to avoid this false assumption.  
(iv) Since (9) is a relation between two estimators of employment or unemployment, the range of its intercept is much wider 

than that of its slope. To account for this difference in ranges, its intercept is made to depend on  and itBP itHP , which 

take values over wider intervals than it

it

BP
TP  and it

it

HP
TP , on which its slope is made to depend.  

(v) Simultaneous estimation of the intercept and slope of (9) permits simultaneous estimation of all the components of  

in (1), since  = 

ˆCPS
itY

0
CPS
itα CPS

itε  and  = . In principle, this simultaneous estimation is superior to the two-step 
estimation of  and , ignoring , as in Section 3. The simultaneous estimation based on (9)-(11) eliminates the 
inconsistencies inherent in the two-step estimation of Section 3. The Chebychev inequality shows that if the variance of 

itY 1
ˆA A

it itYα

itY CPS
ite CPS

itu

0
ca
itζ  is small, then the distribution of  is tightly concentrated about the right-hand side of (10) with the error 

suppressed (see Lehmann, 1999, p. 52). In this case, the right-hand side of (10) with the error suppressed gives a good 
determination of the sum of sampling and non-sampling errors in . Subtracting a good estimator of  +  

from  gives a good estimator of .

0
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itα

ˆCPS
itY CPS

ite CPS
itu

ˆCPS
itY itY 15 Thus, under a restriction on the variance of 0

ca
itζ , equations (9)-(11) permit 

accurate simultaneous estimation of all the components of . These results reveal the advantages of using equations 
(9)-(11) instead of the combined model in Section 3.          
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(vi) Swamy, Mehta and Chang (2006) show that superior estimates of  are unlikely to be obtained when the dependent and 
explanatory variables of (9) are interchanged. Therefore, we do not make such an interchange in this paper.  
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For i = 1, …, m and fixed t, the  are assumed to be a random sample from the “superpopulation” defined by  =  

and are assigned a model conditional probability distribution of (  - ) =  given  and the coefficient 
itY itY 1

ˆA A
it itYα

ˆCPS
itY 0
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itα 1

ˆA A
it itYα ˆ A

it itY y= A

                                                 
14 Swamy, Mehta and Chang (2006) extend model (9) to include more than two estimators of  and also to sub-state areas 
for which CPS data are either too sparse or unavailable.   

itY

15 The importance of having a good estimate of employment can be seen from Rowthorn and Glyn ((2006) and Magnac and Visser (1999). 



drivers. Assumptions (10) and (11) imply that CPS
itε  (= ) and 0

CPS
itα A

itε  =  -  = (1 - ˆ A
itY itY 1

A
itα )  follow a bivariate conditional 

frequency distributions given  =  and the coefficient drivers, as i varies for fixed t. Let the model means of this 

distribution be denoted by  =  and 

ˆ A
itY
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itY A
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m it it it itE y BP )ε = CPS

itμHP ˆ( | , , )it it

it it

BP HPA A A
m it it it TP TPE Y yε =  = A

itμ . Then  and CPS
itμ A

itμ  

represent the biases in  and , respectively. The connection between ( , ˆCPS
itY ˆ A

itY CPS
itμ )A

itμ ′  and the terms in equations (10) and 
(11) is as follows:  

00
caπ  = Constant bias in that affects all i or the constant term of the bias, , in ;  ˆCPS

itY CPS
itμ ˆCPS

itY

01 02
ca ca

it itBP HPπ π+  = Variable component of the bias, , in ;  CPS
itμ ˆCPS

itY

0
ca
itζ  = Fluctuating component of the error, CPS

itε ; 

10 11 12[(1 ) ( ) ( )]it it

it it

BP HPca ca ca A
itTP TP yπ π π− − −  = Variable component of the bias, A

itμ , in ;  ˆ A
itY

1
ca A
it ityζ−  = Fluctuating component of the error, A

itε .  
 
Thus, 1

A
itα  presents no difficult problems even though it is a non-linear function of  and ˆ A

itY A
itε  if assumption (A2) is true. The 

above decomposition of the sampling and non-sampling errors of  is related to Cochran’s (1977, p. 378) decomposition 
of an error of measurement on a unit based on his model of measurement error.
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16 It should be noted that with fixed t, the time 
series shocks of  and  are fixed and get subsumed into  and ˆCPS

itY ˆ A
itY CPS

itμ A
itμ , respectively.  

 
Inserting (10) and (11) into model (9) gives 
    = (ˆCPS

itY 00 01 02 0
ca ca ca ca

it it itBP HPπ π π+ + + ζ )  
                + { 10 11 12 1

ˆ( ) ( ) }it it

it it

BP HPca ca ca ca A
it itTP TP Yπ π π ζ+ + + ,   i = 1, …, m.                                                                           (12) 

Note that in this model, the interactions between some of the coefficient drivers and the explanatory variable of model (9) 
appear as additional explanatory variables and the disturbances, , are heteroscedastic. This means that the 
formulation in (12) is much richer than model (9) with fixed intercept and fixed slope which is misspecified.

0 1
ˆca ca A

it it itYζ ζ+
17 In (12), cross-

sectional variation in the pair, ( , ), is modeled by getting the national intercept, ˆCPS
itY ˆ A

itY 00
caπ , and slope, 10

caπ ,--which are 

common to all areas--modified by individual area components. In other words, the m pairs, ( , ), are modeled 
simultaneously so that model (12) for each area consists of the common national intercept, 

ˆCPS
itY ˆ A

itY

00
caπ , and slope, 10

caπ , and their 
deviations from the national level. Model (12) recognizes major aspects of the sampling designs yielding  and  

because the coefficient drivers are selected to explain high proportions of spatial and temporal variations in  and the sums 

of sampling and non-sampling errors of  and . On a definition suggested by a sentence in Hwang and Dempster 
(1999, p. 298) attempting to recognize major aspects of sample design, temporal variation, and spatial variation amounts to 
getting the science right. Model (12) gets the science right in this sense. The misspecifications in (12) with these features can 
be less serious than those in (3).  
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Under assumptions (10) and (11), model (12) implies that for i = 1, …, m and fixed t, given  =  and the coefficient 

drivers, the  are independently and conditionally distributed with model mean equal to  -

ˆ A
itY A

ity
ˆCPS
itY CPS

itμ A
itμ  +  and model 

variance equal to . The basic fitting algorithm for (12) is an Iteratively Re-Scaled 
Generalized Least Squares (IRSGLS) method of Chang, et al. (2000) where in every iteration, the weighting of the sums of 
squares and cross products of observations on the dependent and explanatory variables in (12) by the elements of the inverse 
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16 Estimation of this model requires replicated data which we do not have.  
17 The treatment of the coefficients of model (9) as constants is a misspecification because it ignores (i) variations in the sampling and non-
sampling errors of , (ii) variations in the sampling and non-sampling errors of , and (iii) the correlations between ˆ A

itY ˆCPS
itY 1
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itα  and the 

elements of ( , , .    ˆ A
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of the covariance matrix of the heteroscedastic disturbances, , will be performed. These model-based weights as 

well as the design-based weights embedded in  and  affect the estimates of the coefficients and the error terms of 

(12). This is how the sampling mechanisms generating  and  are modeled in (12). A model-based approach that 
ignores the sampling mechanism is not valid unless the sampling distribution does not depend on the survey outcomes (see 
Little, 2004, p. 548).  
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5.2 Estimation of Model (12) 
The number of the unknown parameters of model (12) is 10: six π s, three distinct elements of ζΔ , and one 2

ζσ . Given the 

cross-sectional data, , , , CPS
ity A

ity itBP itHP , , for i = 1, …, m and fixed t, an IRSGLS method can be used to obtain good 
approximations to the minimum variance linear unbiased estimators (MVLUEs) of the coefficients and the BLUPs of the 
errors of model (12). These approximations are denoted by (

itTP

ˆ ca
khπ , k = 0, 1, h = 0, 1, 2, ˆca

kitζ , k = 0, 1). For k = 0, 1, ˆca
kitζ  is an 

EBLUP of ca
kitζ . Using these approximations in place of their population counterparts used in (10) and (11) gives the 

estimators of  and 0
CPS
itα 1

A
itα , denoted by  and 0ˆ CPS

itα 1ˆ
A
itα , respectively. The corresponding estimator of 2

ζ ζσ Δ  is denoted by 
2 ˆˆζ ζσ Δ . Appropriate formulas for computing the standard errors of these estimates have been worked out in the Appendix. 

   
Kariya and Kurata (2004, pp. 42 and 73) prove that the IRSGLS estimators of the coefficients and the EBLUPs of the errors 
of model (12) possess finite second-order moments under very general conditions. To these conditions the condition that m – 
6  6 should be added. With this additional condition, two or more degrees of freedom remain unutilized after the estimation 
of the coefficients of (12), 

≥
2
ζσ , and the elements of ζΔ . Sufficient conditions for the consistency and asymptotic normality of 

the IRSGLS estimators of the coefficients of model (12) are given in Cavanagh and Rothenberg (1995). We need 
assumptions (A1) and (A2) because a necessary condition for the consistency of the IRSGLS estimators of the coefficients of 
(12) is that the model conditional expectations of 0

ca
itζ  and 1

ca
itζ , given  =  and the coefficient drivers are zero.     ˆ A

itY A
ity

 
5.3 Bias- and Error-Corrected Version of the CPS Estimator 
Since  = 0

CPS
itα CPS

itε  represents the sum of sampling and non-sampling errors in  =  + ˆCPS
itY itY CPS

itε , satisfying equation (10), it 
follows that the formula   
   0 00 01 02

ˆˆ ˆ ˆˆ ˆ ˆ ˆ 0
BECCPS CPS CPS CPS ca ca ca ca

it it it it it it itY Y Y BP HPα π π π ζ= − = − − − −                                                                               (13) 
gives “bias- and error-corrected CPS (BECCPS) estimator” of . A value of this estimateor is denoted by itY BECCPS

ity .  
  
The standard error (SE) of ˆ BECCPS

itY  is the square root of an approximately unbiased estimator of the model MSE, 

. Its derivation is given in the Appendix. Cochran’s (1977, p. 14) computations show that the effect of the 

bias in  due to  on the probability of the error,  - , of more than (or less than) 1.96 (or -1.96) times the 

standard deviation of  is appreciable if the absolute value of the bias is greater than one tenth of the standard deviation 

of . In these cases, the bias correction in (13) is desirable if the absolute value of the bias remaining in 

2ˆ( BECCPS
m it itE Y Y− )

ˆCPS
itY CPS

itu ˆCPS
itY itY

ˆCPS
itY

ˆCPS
itY ˆ BECCPS

itY  after the 

correction is less than one tenth of the standard deviation of ˆ BECCPS
itY . Such desirable bias corrections may frequently occur 

with ˆ BECCPS
itY .   

 
Applications. Use the successive difference replication method described in U.S. Department of Labor (2006, Chapter 14) to 
obtain a new estimate of the within-PSU variance contribution to the total design variance, ˆ( |CPS )p it itV Y Y , of  in (2). 

Apply an IRSGLS method to equations (5) and (6) after inserting this new estimate and 

ˆCPS
itY

BECCPS
ity every place an estimate of the 

within-PSU variance and a CPS estimate of  are used in these equations, respectively. This application can give improved 
estimates of design effect and  used in equation (4).       
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itb
     

5.4 Improved Additional Estimator 



Using 1ˆ
A
itα  and  in place of A

ity 1
A
itα  and  used in  = , respectively, gives  ˆ A

itY itY 1
ˆA A

it itYα

   1 10 11 12 1̂
ˆ ˆ ˆ ˆ ˆ( it it

it it

BP HP )IA A A ca ca ca ca
it it it it itTP TPY yα π π π ζ= = + + + Ay                                                                                                                     (14) 

where ˆ IA
itY  denotes an improved additional (IA) estimator of .  itY

 
The SE of ˆ IA

itY  is the square root of an approximately unbiased estimator of the model MSE, . Its derivation is 
given in the Appendix.  
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5.5 Comparison of BECCPS and IA Estimators 
A proof of the result, ˆ BECCPS

itY  = ˆ IA
itY  with probability (w.p.) 1, is given in the Appendix. The following prior information 

helps us assess the relative accuracies of , , ˆCPS
itY ˆ A

itY ˆ BECCPS
itY , and ˆ IA

itY .  
 
Prior information. (i) The overall CPS sample size is sufficient to produce national-level monthly employment or 
unemployment estimators that satisfy prespecified precision requirements. (ii) However, relatively small CPS state sample 
sizes do not permit the production of reliable monthly employment and unemployment estimates for the states. (iii) The CPS 
and CES survey being the household and establishment surveys provide information about “place-of-residence” and “place-
of-work” employment, respectively (see U.S. Department of Labor, 1997, p. 45). Consequently,  may contain a larger 

magnitude of non-sampling error than  when it is viewed as an estimator of “place-of-residence” employment, 
particularly for metropolitan areas like Washington, DC where a good many suburbanites work (see footnote 12). (iv) 
Extrapolated QCEW data generated from a time series model may contain large errors because the best nonlinear models that 
accurately represent asymmetric cycles of state employment are unknown. (v) Both at the national and state levels U.I. 
Claims are very inaccurate estimates of unemployment.  
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This prior information implies that at the national level, CPS estimates are more accurate than the corresponding additional 
estimates; that may or may not be the case for state level data. For this reason,  being a state level estimator may not be 

more precise than 

ˆCPS
itY

ˆ BECCPS
itY  or ˆ IA

itY  and  may not be more precise than .  Let  be an estimate of  based on either ˆ A
itY ˆCPS

itY *
ity itY

ˆ BECCPS
itY  or ˆ IA

itY . Then  
Restriction I.  shall lie within an estimated confidence interval of .  *

ity CPS
ity

Let m be the number of states or areas which geographically exhaust the entire U.S. Then  
Restriction II. the sum  shall equal the CPS estimate of the national employment or unemployment, .  *

1

m
iti

y
=∑ 1

m
iti

Y
=∑

 
The idea of Restriction I is to limit the deviation of  from . This limiting reduces the loss in efficiency due to the 
misspecifications in model (12) for some states without losing the benefits of correctly specified model (12) for other states 
(see Jiang and Lahiri, 2006, p. 36). Prior information (i) stated above justifies Restriction II. The ’s do not satisfy 
Restrictions I and II if the coefficient drivers in (10) and (11) are inappropriate. Swamy, Mehta and Chang (2006) found that 
when  based on the American Community Survey was used in (9), the coefficient drivers in (10) and (11) were adequate 

in the sense that they produced the values of 

*
ity CPS

ity

*
ity

ˆ A
itY

ˆ BECCPS
itY  that satisfied Restriction I for all i = 1, 2, … m. It is a good practice to 

experiment with all possible combinations of coefficient drivers on which data are available. After everything that can be 
done in this way has been done, if some of the resulting ’s do not satisfy Restriction I, then this restriction may be 
imposed externally. That is, use  if  lies within an estimated confidence interval of  and use an estimated lower or 
upper confidence limit of  whichever is closer to  otherwise (see Rao, 2003, p. 118). Hopefully, major changes in 

these restricted ’s are not needed to satisfy Restriction II.  

*
ity

*
ity *

ity CPS
ity

CPS
ity *

ity
*
ity

      
6. Time Series of Cross-Sectional Estimates 



Estimating model (12) separately for each month denoted by t = 1, …, τ  (= min( 1τ , …, mτ )) gives ( BECCPS
ity , 0

CPS
ita )′ , i = 1, 

…, m, t = 1, …, τ , where BECCPS
ity  and , are the values of 0

CPS
ita ˆ BECCPS

itY  and , respectively, obtained from cross-sectional 
data in (12) for each t = 1, …, 

0ˆ CPS
itα

τ . To produce seasonally adjusted estimates of the , the estimates, itY BECCPS
ity , t = 1, …, τ , 

will be adjusted externally by X-12 ARIMA for each i = 1, …, m. Let  be an estimate of . Such estimates are 

computed by the Bureau of Labor Statistics (BLS). An AR (15) model may be fitted to /

2
,

ˆ CPSe it
σ 2

,CPSe it
σ

0
CPS
ita

,
ˆ CPSe it

σ , t = 1, …, τ , for each i = 

1, …, m, to estimate the variances and autocovariances of  implied by the CPS sampling design.    CPS
ite

   
7. Example 

In this section,  denotes total employment,  = , the CES survey estimator of , t denotes January 2006, i indexes 
the 50 United States and the District of Columbia, and m = 51. Following the IRSGLS method and using the data on the 
variables in (12) with these values of i, t, and m, we obtain the estimates of the coefficients of (12) given below:   

itY ˆ A
itY ˆCES

itY itY

   0(0.42495) ( 0.18712)(16.99)

ˆ(0.00000043158 0.021745 0.008542 )CPS ca
it it it ity BP HP ζ

−
= + − +  

               1(71.028) (0.53134) ( 0.18362)
ˆ(1.0403 0.016003 0.005132 )ca CESit it

it it
it it

BP HP
y

TP TP
ζ

−
+ + − +                                                                                               (15) 

where  is the CES survey estimate of , all the other variables are as defined in (12), and the figures in parentheses 
below the coefficient estimates are the t-ratios.  
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ity itY

 
Equation (15) shows that the estimate, 0.00000043158, of the common national intercept, 00

caπ , is very close to zero and the 

estimate, 1.0403, of the common national slope, 10
caπ , differs slightly from  = 1.0664. Both these 

estimates are significant. The 51 estimates of the errors of (10) and (11) and the coefficients of (9) lie within the ranges: -
417140  

51 51

1 1
( /CPS CES

it iti i
y y

= =∑ ∑ )

≤ 0
ˆca

itζ   207120, -0.019683  ≤ ≤ 1̂
ca
itζ   0.0097733, -412470 ≤ ≤   0ˆ CPS

itα ≤  207870, and 1.03 ≤   1ˆ
CES
itα ≤  1.1238. The 

estimates of the variances of 0
ca
itζ  and 1

ca
itζ  are: 9.185E+08 and 0.00002045, respectively. These estimates show that the 

coefficient drivers,  and itBP itHP , included in (10) explain only a very small proportion of the variation in , i = 1, …, 
51. We need to include additional coefficient drivers in (10) to reduce the variance of 

0
CPS
itα

0
ca
itζ  to a small number. The capital 

equipment and the ratio of capital to labor for each area in period t can serve as additional coefficient drivers. Factors that 
adjust the “place-of-work” nonfarm employment estimates, , to a place-of-residence basis, as in the CPS, can also serve 
as additional coefficient drivers. Unfortunately, data on these variables are not available.  

CES
ity

  
The CPS estimate, , for each of the 51 areas is given in the column, labeled “CPS”, of Table 1. The values of the 
BECCPS estimator in (13) for the 51 areas implied by the estimates in (15) are given in the column, labeled “BECCPS”, of 
Table 1. They are the estimates of the true value component, , of  in (1). The estimate of the error component,  + 

, of  in (1) for each of the 51 areas is given in the column, labeled “S&NSE”, of Table 1. Note that the estimates in 

the columns, labeled “BECCPS” and “S&NSE”, are the results of simultaneously estimating the components of  using 
model (12). The coefficient drivers included in equations (10) and (11) are adequate for 36 areas in the sense that the 
unrestricted BECCPS estimates for these areas statisfy Restriction I. We had to impose Restriction I externally on the 
BECCPS estimates for the remaining 15 areas.    

CPS
ity

itY ˆCPS
itY CPS

ite
CPS
itu ˆCPS

itY
ˆCPS
itY

 
The two-step estimates of the components,  and , of  for each state when  is ignored, are given in the 
columns, labeled, “Signal” and “SurE”, of Table 1, respectively. We have now three different estimates of . They are 
denoted by “CPS”, “BECCPS”, and “Signal”, respectively. The CPS estimates are not satisfactory because their accuracy is 
inadequate, as we have already pointed out in Section 2.1. The Signal estimates are also not satisfactory because they are 
implied by the incorrect estimates of the parameters of models (2) and (3), as we have already shown in Section 3. Sufficient 
conditions for the MSE of the BECCPS estimator in (13) to be smaller than the design variance (4) of the CPS estimator, 

itY CPS
ite ˆCPS

itY CPS
itu

itY



ˆCPS
itY , in (1) are given in the Appendix. These conditions can be satisfied in large samples even when an approximately 

unbiased estimate of the MSE of (13) is larger than a sample estimate of the design variance in (4), as we have explained in 
Section 4. If these conditions are not satisfied by model (12) in small samples, then they can be satisfied when we expand the 
set of coefficient drivers in (10).  

             
The design variance of  given in (4) involves unknown quantities and hence is unknown. Its estimate was obtained using 

 and the BLS estimates of  and  in place of , , and  used in (4), respectively. It is given for each of 
the 51 areas in the column, labeled “varcps” of Table 1. An alternative estimate of (4) was obtained using the 
estimate,

ˆCPS
itY

CPS
ity itk

,CPSe it
D itY itk

,CPSe it
D

BECCPS
ity , of  and the IRSGLS estimates of itY 01δ  and 0itgξ  in place of , ˆ ( )CPS

itY g 01δ , and 0itgξ  used in (5), 
respectively. It is given for each of the 51 areas in the column, labeled “varbeccps” of Table 1. The “varbeccps” estimates can 
be more accurate than the “varcps” estimates because the BECCPS estimator in (13) corrects for bias and error in .    ˆCPS

itY
  

Each value given in the column, labeled “VarSignal”, of Table 1 is an estimate of the model variance of the two-step 
estimator of  for a state. It is an underestimate of the true model variance because the parameters of model (3) are 
estimated, holding the parameters of model (2) fixed at their incorrectly estimated values.        

itY

         
8. Conclusions  

 
Simultaneous estimates of the true value and sampling and non-sampling error components of small area sample estimators 
presented in this paper are based on weaker assumptions than their two-step estimates. Misspecifications in linking models 
can result in misestimated components of sample estimators and design variances. Specification errors in the linking models 
used in simultaneous estimation can be negligible compared to those in the linking models used in two-step estimation.  
       
Appendix 

A. Derivation of the MSE of the BECCPS Estimator 
Let itx  be the 2-vector, ,  be the 5-vector, ˆ(1, )A

itY ′ itz (1, , , , )it it

it it

BP HP
it it TP TPBP HP ′ , caΠ  be the (2× 5) matrix having 

 and  as its first and second rows, respectively, and 00 01 02( , , , 0, 0ca ca caπ π π ) )10 11 12( , 0, 0, ,ca ca caπ π π ca
itζ  be the 2-vector, 0 1( , )ca ca

it itζ ζ ′ , 
where the transpose of a matrix is denoted by a prime. Using these definitions the m equations in (12) are written  
    = ˆCPS

tY ztX caLongπ  + ca
xt tD ζ                                                                                                                        (A1) 

where  is the m-vector, ( , …, , ˆCPS
tY 1̂

CPS
tY ˆCPS

mtY )′ ztX  is the (m× 10) matrix having a Kronecker product between itz ′  and itx′ , 
denoted by , as its ith row,( it itz x′ ′⊗ ) 18  is the 10-vector given by a column stack of caLongπ caΠ , xtD  is the (m× 2m) matrix, 

diag[ 1tx′ , …, mtx′ ], ca
tζ  is the 2m-vector, ( 1

ca
tζ ′ , …, )ca

mtζ ′ ′ , and there are zero restrictions on the elements of . These 
restrictions can be stated as R  = 0, where R is the 4

caLongπ
caLongπ × 10 matrix of full row rank having ones as its (1, 4)-th, (2, 6)-th, 

(3, 7)-th, and (4, 9)-th elements and zeros elsewhere, and 0 is the 4-vector of zeros. Now a (6× 10) matrix C of full row rank 
can be found such that R C  = 0. Under assumptions (10) and (11),  = 0 and  = ′ ( | )t

ca
m xt t zE D Xζ )

)
( |ca

m xt t ztV D Xζ
2(xt m xtD I Dζ ζσ ′⊗ Δ  = ωΣ , where I denotes an identity matrix and a subscript is included to indicate its order, and ω  is the 

4-vector having 2
ζσ  and the distinct elements of ζΔ  as its elements. Swamy and Tinsley (1980) explain how we go from 

equation (12) to equation (A1).   
 
Identification in the sense of Lehmann and Casella (1998, p. 24). The coefficient vector, , is identifiable if caLongπ ztX  has 
full column rank. The error vector, ca

tζ , is unidentifiable because xtD  does not have full column rank. This result implies that 
ca
tζ  is not consistently estimable (see Lehmann and Casella, 1998, p. 57). The coefficient drivers are used in (10) and (11) to 

                                                 
18 The definition of a Kronecker product we use is given by Greene (2003, p. 824), among others. 



reduce the unidentifiable portions of the coefficients of (9). However, ca
xt tD ζ  is identifiable and its predictor can be used to 

obtain a consistent estimator of ω .  
 

For known ω , applying the derivation in Greene (2003, p. 100) with appropriate  modifications to model (A1) gives the 
MVLUE of  that satisfies the restriction R  = 0. This estimator is     caLongπ caLongπ
                                                                                                                                  (A2) 
where the subscript of  is shorthand for “restricted” and 

1 1 1 ˆˆ ( ) ( )caLong CPS
R C C C CX Yω ωπ ω − − −′ ′ ′= Ψ Σzt t

ˆ caLong
Rπ ωΨ  = 1( zt ztX Xω

1)− −′ Σ . It follows from C.R. Rao (1973, p.77, 
Problem 33) that  = 1 1( )C C C Cω

− −′ ′Ψ ωΨ  - 1( )R R R Rω ω
−′ ′Ψ Ψ Ψω

C

. Post-multiplying both sides of this equation by  
gives  = , since  = 0. This result is needed to prove that estimator (A2) is unbiased 
with the model covariance matrix    

1 caLong
ω π−Ψ

1 1 1( ) caLongC C C Cω ω π− − −′ ′Ψ Ψ caLongπ caLongRπ

   .                                                                                                                               (A3)   1 1ˆ( ( ) | ) ( )caLong
m R ztV X C C Cωπ ω − −′ ′= Ψ

 
For known ω , the BLUP of ca

tζ  is  
   ˆca

Rtζ (ω ) =                                                                                                          (A4) 

where 

2 1 ˆ( ) CPS
m xtI D Mζ ζ ω ωσ −′⊗ Δ Σ tY

Mω  = mI  - 1 1( )zt ztX C C C CX 1
ω ω
− − −′ ′ ′Ψ Σ . The matrix, Mω , is idempotent (though not symmetric) with the property that 

ztM X Cω ′  = 0. It can be shown that ) = 0,  = 0, and  = ˆ( ( ) |ca
m Rt ztE Xζ ω ˆˆv [( ( ), ( )) | ]caLong ca

m R Rt ztCo Xπ ω ζ ω ˆ( ( ) |ca
m Rt ztV Xζ ω )

2 1 2( ) ( )m xt xt mI D M D Iζ ζ ω ω ζ ζσ σ−′⊗ Δ Σ ⊗ Δ  because M Mω ω ω′Σ  = Mω ωΣ .  
 
Pre-multiplying both sides of equation (A4) by xtD  gives ˆ ( )ca

xt RtD ζ ω  =  - ˆCPS
tY ˆ ( )caLong

zt RX π ω  which proves that ˆ BECCPS
itY  in 

(13) is equal to ˆ IA
itY  in (14) with probability 1 for all i = 1, …, m and fixed t. For known ω  case, the BECCPS estimator of 

 in (13) becomes itY ˆ ( )BECCPS
itY ω  = 0

ˆ ˆ ( )CPS CPS
it itY α ω−  = 

11
ˆˆ ˆ( ) ( ) ( )CPS caLong ca

it it R i l RtY z l j Dπ ω ζ ω′ ′ ′− ⊗ − , where  is the m-vector 

having 1 as its ith element and zeros elsewhere,  is the 2-vector, 
ij

1l (1, 0)′ , and 
1l

D  is the m× 2m matrix, 1( )mI l ′⊗ .  
 

The MSE of ˆ ( )BECCPS
itY ω  is  

2ˆ[{ ( ) } | ]BECCPS
m it it ztE Y Y Xω −  =  2

0 0
ˆ ˆˆ[{ ( ) } | ]CPS CPS CPS CPS

m it it it it ztE Y Y Xα ω α− − +

                                              = 1 ( )g ω  + 2 ( )g ω                                                                                          (A5) 
where    

1 ( )g ω  =  +                               

1 1
                                                (A6) 

and                                                                                                                                                          

1 1

2 2 1 2[( ) ( ) ( )]i l m m xt xt m l ij D I I D D I D jζ ζ ζ ζ ω ζ ζσ σ σ−′ ′⊗ Δ − ⊗ Δ Σ ⊗ Δ ′

′2 1 1 1 1 2
1[ ( ) 2( )] ( ) ( )i l m xt zt it zt xt m l ij D I D X z l C C C CX D I D jζ ζ ω ω ω ζ ζσ σ− − − −′ ′ ′ ′ ′ ′ ′⊗ Δ Σ − ⊗ Ψ Σ ⊗ Δ

2 ( )g ω  = .                                                                                                       (A7)  1 1
1( ) ( ) (it itz l C C C C z lω

− −′ ′ ′ ′⊗ Ψ ⊗ 1 )
 
As in Rao (2003, p. 99, (6.2.11)), the second term in (A5) arises as a direct consequence of using ˆ ( )caLong

Rπ ω  instead of 
 in (A4). In the cases where the coefficient drivers in (10) and (11) reduce the magnitudes of the elements of caLongπ 2

ζ ζσ Δ  to 
small values, the first term of 1 ( )g ω  can be much smaller than Rao’s (2003, pp. 99 and 117) 1 ( )g δ  which, in turn, is smaller 
than the design variance of  when  is absent. Also, CPS

ite CPS
itu 1 ( )g ω  is smaller than its first term if its second term is negative.    

       
Now we can elaborate on our discussion in Section 4. Rao (2003, p. 117) proved that the first term in (A5) is smaller than the 
design variance of  if (i) the non-sampling error, , is zero with probability 1 for all i and t, (ii) the sampling errors, 

, i = 1, …, m, are independently distributed with known design variances, (iii) for i = 1, …, m and fixed t, the  follow 
a GLM model of Rao’s (2003, p. 116) type with no constraints on its coefficients, (iv) the errors of the GLM model (or the 

’s in Rao’s notation) are identically and independently distributed with known model variance, (v) the GLM model error is 

CPS
ite CPS

itu
CPS
ite itY

iv



independent of  for all i and t, and (vi) the estimator, CPS
ite ˆ BECCPS

itY , is replaced by the BLUP of  given by the GLM model. 
Even when these conditions hold, the sum of the two terms in (A5) may not be smaller than the design variance of  
unless m is sufficiently large and the regularity conditions given in Rao (2003, p. 117) are satisfied. In any case, ignoring the 
non-sampling error, , can result in an inconsistent and inefficient predictor of .    

itY
CPS
ite

CPS
itu itY

 
We now assume that the error term of model (A1) is normally distributed.  

ˆ( |ca CPS
m t tE M Yωζ ) tY

)

 =                                                                                     (A8) 

where  is a generalized inverse of 

2 ˆ( ) ( ) CPS
m xtI D M M M Mζ ζ ω ω ω ω ωσ −′ ′ ′⊗ Δ Σ

(M Mω ω ω
−′Σ M Mω ω ω′Σ  and this generalized inverse is defined as in C.R. Rao (1973, p. 

24). Swamy and Mehta (1975, p. 596) proved that the right-hand side of equation (A8) is equal to the BLUP in (A4). Thus, 
when ca

tζ  is normal, its BLUP is equal to its best unbiased predictor (BUP), since  is the BUP of ˆ( |ca CPS
m t tE M Yωζ ) ca

tζ .     
    

Let A be a  matrix of full column rank such that ( 6m m× − ) ztA X C′ ′  = 0. Then  

   .                                                                                                    (A9) 

It follows from C.R. Rao (1973, p. 77, Problem 33) that 

2ˆ( | ) ( ) ( )ca CPS CPS
m t t m xt tE A Y I D A A A A Yζ ζ ωζ σ −′ ′ ′= ⊗ Δ Σ 1 ˆ′

1( )A A A Aω
−′ ′Σ  + 1 1 1 1( )zt zt zt ztX C CX X C CX′ω ω ω

− − − −′ ′ ′Σ Σ 1 = −Σ ωΣ . 
Inserting this identity into (A9) shows that (A9) is equal to the BLUP of ca

tζ . This derivation extends Jiang’s (1997) proof to 
the cases where the coefficients of model (A1) are subject to linear restrictions.  
   
We now turn to the case where ω  is unknown. We use ˆCPS

tA Y′  to estimate 2
ζ ζσ Δ  so that our estimator, denoted by 2 ˆˆζ ζσ Δ , 

of 2
ζ ζσ Δ  is a function of ˆCPS

tA Y′ . Let ω̂  be the 4-vector having 2ˆζσ  and the distinct elements of ˆ
ζΔ  as its elements. The 

BECCPS estimator, ˆ BECCPS
itY , of  in (13) can be written as itY ˆ ˆ( )BECCPS

itY ω  =  - ˆCPS
itY 0ˆ ˆ( )CPS

itα ω  =  - ˆCPS
itY 1 ˆˆ( ) (caLong

it Rz l )π ω′ ′⊗  - 

1

ˆ ˆ( )ca
i l Rtj D ζ ω′ . Sufficient conditions for  = 0 are given in Kariya and Kurata (2004, pp. 42 and 73). The 

MSE of 

ˆ ˆ[ ( )BECCPS
m it itE Y Yω − ]

ˆ ˆ( )BECCPS
itY ω  is 

2ˆ ˆ([ ( ) ] | )BECCPS
m it it ztE Y Y Xω −  =    2ˆ([ ( ) ] | )BECCPS

m it it ztE Y Y Xω −

                                          +  2ˆ ˆˆ([ ( ) ( )] | )BECCPS BECCPS
m it it ztE Y Y Xω ω−

                                          + 2 .                                        (A10) 
In (A5), we have already evaluated the first term on the right-hand side of this equation. To show that the third term on the 
right-hand side of this equation vanishes, we first note that 

ˆ ˆ ˆˆ([ ( ) ][ ( ) ( )] | )BECCPS BECCPS BECCPS
m it it it itE Y Y Y Y Xω ω ω− − zt

ˆ ˆ( )BECCPS
itY ω  - ˆ ( )BECCPS

itY ω  = - 0ˆ ˆ( )CPS
itα ω  + 0ˆ ( )CPS

itα ω  =  

- 1 ˆˆ( ) ( )caLong
it Rz l π ω′ ′⊗

1

ˆ ˆ( )ca
i l Rtj D - ζ ω′ caLong

it Rz l + 1 ˆ( ) ( )π ω′ ′⊗
1

ˆ ( )ca
i l Rtj D + ζ ω′ 1 = 1 1

1( ){ ( )it ztz l C C C CXω ω
− − −′ ′ ′ ′ ′⊗ Ψ Σ  - 

1 1
ˆ ˆ( ) ztC C C CX 1

ω ω
− − −′ ′ ′Ψ Σ }[Y  - ˆCPS

t
caLong

zt RX C C C Cω ω
1 1 1 ˆ( ) ( )π ω− − −′ ′Ψ Ψ

1

2 1 ˆ ˆ{( ) [ ( )]CPS caLong
i l m xt t zt Rj D I D Y Xζ ζ ω] + σ π ω−′ ′⊗ Δ Σ −

ˆ ( )]

 - 
2 1

ˆ
ˆ ˆ ˆˆ( ) [ CPS caLong

m xt t zt RI D Y Xζ ζ ωσ π ω−′⊗ Δ Σ − } is a function of ˆCPS
tA Y′  because ω̂ ,  -ˆCPS

tY 1 1 1 ˆ( ) (caLong
zt RX C C C Cω ω )π ω− − −′ ′Ψ Ψ , 

 - ˆCPS
tY ˆ ( )caLong

zt RX π ω , and  -ˆCPS
tY ˆˆ ( )caLong

zt RX π ω  are all functions of ˆCPS
tA Y′ . Furthermore, the equation, ˆ ( )BECCPS

it itY Yω −  = 

 1 ˆ( )[ ( ) ]caLong caLong
it Rz l π ω π′ ′− ⊗ − ˆ[ ( ) ]ca ca

i l Rt tj D
1

ζ ω ζ′− − , is such that the first term on its right-hand side is independent of 

ˆCPS
tA Y′  because of the condition that A ztX C′ ′  = 0, and the last term on its right-hand side can be shown to be equal to 

1
ˆ[ ( | ) ]ca CPS ca

i l m t t tj D E A Yζ ζ′ ′ −  using the result in (A9). Hence, the third term on the right-hand side of equation (A10) is 

equal to 2   + 

2  which vanishes. This proof extends the 
proofs of Swamy and Mehta (1969), Jiang (2001), and Rao (2003, p. 114) to the cases where the coefficients of model (A1) 
are subject to linear restrictions.      

1
ˆ ˆ ˆˆ ˆ([ ( ) ( )] [ ( ){ ( ) } | , ])BECCPS BECCPS caLong caLong CPS

m it it m it R t ztE Y Y E z l A Y Xω ω π ω π′ ′ ′− − ⊗ −

1
ˆ ˆ ˆ ˆˆ([ ( ) ( )][ ( { ( | ) } | , )])BECCPS BECCPS ca CPS ca CPS

m it it i l m m t t t t ztE Y Y j D E E A Y A Y Xω ω ζ ζ′ ′ ′− − −

 



Because of the second term on the right-hand side of equation (A10), the MSE of ˆ ˆ( )BECCPS
itY ω  is always larger than that of 

ˆ ( )BECCPS
itY ω  in the normal case. The method of approximating the MSE of ˆ ˆ( )BECCPS

itY ω  by the MSE of ˆ ( )BECCPS
itY ω  could, 

therefore, lead to serious underestimation.  
 

Unfortunately, the exact evaluation of the second term on the right-hand side of equation (A10) is generally not possible 
except in some special cases, as Rao (2003, p. 103) has pointed out. It is therefore necessary to find an approximation to this 
term. We begin the derivation of such an approximation with the assumptions (see, e.g., Lehmann and Casella, 1998, p. 430) 
that permit an expansion of 0ˆ ˆ( )CPS

itα ω  about 0ˆ ( )CPS
itα ω  with bounded coefficients. Using a Taylor approximation, we obtain                           

   0 0ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )CPS CPS
it it dα ω α ω ω ω ω′− ≈ −                                                                                                                                     (A11) 

where ( )d ω  = 0ˆ ( ) /CPS
itα ω∂ ω∂  and it is assumed that the terms involving higher powers of ω̂ ω−  are of lower order relative 

to ˆ( ) ( )d ω ω ω′ − . Let  = 1b′
1

2( )i l m xtj D I D 1
ζ ζ ωσ −′ ′⊗ Δ Σ . Then 0ˆ ( )CPS

itα ω  =  + 

 + . Under normality,  

1 1 ˆ[( ) ][ ( ) ]caLong caLong
it zt Rz l b X π ω π′ ′ ′⊗ − −

1( ) caLong
itz l π′ ′⊗ 1

ˆ( CPS caLong
t ztb Y X π′ − )

   ( )d ω  ≈  (  = 1
ˆ/ )( CPS caLong
t ztb Y Xω π′∂ ∂ − ) * ( )d ω ,                                                                                                              (A12) 

since the terms involving the derivatives of ˆ ( )caLong
Rπ ω  -  with respect to caLongπ ω  are of lower order. Therefore,  

   2ˆ[ ( ) ( )]mE d ω ω ω′ −  ≈  * 2ˆ[ ( ) ( )]mE d ω ω ω′ −   tr[≈ * * ˆ( ( ) ( ) ) ( )]mE d d Vω ω ω′    
                                                         = tr[( 1 1 ˆ/ ) ( / ) ( )b b Vω ]ω ω ω′ ′ ′∂ ∂ Σ ∂ ∂  = 3 ( )g ω                                                          (A13) 

where ˆ( )V ω  is the asymptotic covariance matrix of ω̂ , and the neglected terms are of lower order. It now follows from 
(A11)-(A13) that  
   2

0 0 3
ˆ ˆˆ ˆ ˆ ˆ([ ( ) ( )] | ) ([ ( ) ( )] | ) ( )BECCPS BECCPS CPS CPS

m it it zt m it it ztE Y Y X E X g2ω ω α ω α ω− = − ω≈ .                                                           (A14) 

Inserting (A5) and (A14) into (A10) gives a second-order approximation to the MSE of ˆ ˆ( )BECCPS
itY ω  as  

   2
1 2 3

ˆ ˆ([ ( ) ] | ) ( ) ( ) ( )BECCPS
m it it ztE Y Y X g g gω ω ω− ≈ + + ω                                                                                                       (A15) 

where the terms, 2 ( )g ω  and 3 ( )g ω , arise as a direct consequence of using the estimators rather than the true values of 

 and caLongπ ω , respectively, in ˆ ˆ( )BECCPS
itY ω  and are of lower order than 1 ( )g ω . The estimator ˆ ˆ( )BECCPS

itY ω  cannot be rejected 

in favor of  even when the design variance of  is smaller than the MSE in A(15). The reason is that this design 

variance understates the MSE of  by ignoring .   

ˆCPS
itY CPS

ite
ˆCPS
itY CPS

itu
 
B. Estimation of the MSE of the BECCPS Estimator 
It follows from Rao (2003, p. 104) that 2 ˆ( )mE g ω  ≈  2 ( )g ω  and 3 ˆ( )mE g ω  ≈  3 ( )g ω  to the desired order of approximation, 
but 1 ˆ( )g ω  is usually a biased estimator of 1 ( )g ω  with a bias that is generally of the same order as 2 ( )g ω  and 3 ( )g ω . To 
evaluate this bias, we make all the assumptions that permit a Taylor expansion of 1 ˆ( )g ω  about 1 ( )g ω  with bounded 
coefficients (see Lehmann and Casella (1998, p. 430)). Under these assumptions,  

   1 ˆ( )g ω  = 1 ( )g ω  + 1ˆ( ) (g )ω ω ω′− ∇  + 2
1

1 ˆ( ) ( )(
2

g ˆ )ω ω ω ω′− ∇ −ω                                                                                      (A16)                      

where 1 ( )g ω∇  is the vector of first-order derivatives of 1 ( )g ω  with respect to ω  and 2
1 ( )g ω∇  is the matrix of second-order 

derivatives of 1 ( )g ω  with respect to ω . The estimator ω̂  is generally a biased estimator of ω  and hence the model 
expectation of the second term on the right-hand side of equation (A16) is generally nonzero. Consequently,  

   2
1 1 1 1

1ˆ ˆ( ) ( ) ( ) ( ) tr[ ( ) ( )]
2m mE g g E g g V ˆω ω ω ω ω ω ω′≈ + − ∇ + ∇ .                                                                                           (A17) 

If ωΣ  has a linear structure, then (A17) reduces to  
   1 1 1 3ˆ ˆ( ) ( ) ( ) ( ) ( )m mE g g E g gω ω ω ω ω ω′≈ + − ∇ − .                                                                                                                (A18) 

This result shows that an estimator of the MSE of ˆ ˆ( )BECCPS
itY ω  to the desired order of approximation is given by  



   1 1ˆ ˆ ˆ( )  estimate of [ ( ) ( )] ( ) 2 ( )mg E g g2 3 ˆgω ω ω ω ω ω′− − ∇ + + .                                                                                             (A19) 

The model expectation of (A19) is approximately equal to the MSE of ˆ ˆ( )BECCPS
itY ω . The second term in (A19) can be ignored 

if it is of lower order than - 3 ( )g ω .   
 
C. Derivation of the MSE of the IA Estimator 
When ω  is known, the IA estimator of  in (14) can be written as itY ˆ ( )IA

itY ω  = [ 2 ˆ( ) ( )caLong
it Rz l π ω′ ′⊗

2
ˆ ( )ca

i l Rtj D + ζ ω′ ] , 

where  is the 2-vector, (0, 1) ,  is the m-vector having 1 as its ith element and zeros elsewhere, and 

A
ity

2l ′ ij 2l
D  is the ( 2m m× ) 

matrix, 2( m )I l ′⊗ . The MSE of ˆ ( )IA
itY ω  is  

    =  2ˆ[{ ( ) } | ]IA
m it it ztE Y Y Xω − 2 2

1 1ˆ[{ ( ) } ( ) | ]A A A
m it it it ztE yα ω α− X

                                            = 1 ( )f ω  + 2 ( )f ω                                                                                                                        (A20) 
where  

1 ( )f ω  =     
2 2 2

2 2 1 2 2{( ) ( ) ( )} ( ) {A
i l m m xt xt m l i it i lj D I I D D I D j y j Dζ ζ ζ ζ ω ζ ζσ σ σ−′ ′ ′⊗ Δ − ⊗ Δ Σ ⊗ Δ + ′

2)it2

2 1 1 1 1 2
2( ) 2( )} ( ) ( ) ( A

m xt zt it zt xt m l iI D X z l C C C CX D I D j yζ ζ ω ω ω ζ ζσ σ− − − −′ ′ ′ ′ ′ ′ ′× ⊗ Δ Σ − ⊗ Ψ Σ ⊗ Δ                                                     (A21) 
and  

2 ( )f ω  = .                                                                                                                (A22)  1 1
2( ) ( ) ( )( A

it it itz l C C C C z l yω
− −′ ′ ′ ′⊗ Ψ ⊗ 2

2 )

A second-order approximation to the MSE of ˆ ˆ( )IA
itY ω  is  

2ˆ ˆ([ ( ) ] | )IA
m it it ztE Y Y Xω −   ≈ 1 ( )f ω  + 2 ( )f ω  + 3 ( )f ω                                                                                                          (A23) 

where 3 ( )f ω  = tr[ 2
2 2 ˆ( / ) ( / ) ( )]( )A

itb b Vωω ω ω′ ′ ′∂ ∂ Σ ∂ ∂ y  with 2b′  = 
2

2 1( )i l m xtj D I Dζ ζ ωσ −′ ′⊗ Δ Σ .  
 
D. Estimation of the MSE of the IA Estimator 
An estimator of the MSE of ˆ ˆ( )IA

itY ω  to the desired order of approximation is given by  
   1 1ˆ ˆ ˆ( )  estimate of [ ( ) ( )] ( ) 2 ( )mf E f f2 3 ˆfω ω ω ω ω ω′− − ∇ + + .                                                                              (A24)  
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Table 1. Two-Step versus Simultaneous Estimates of True Value and Error Components 
of Sample Estimates of State Employment for January 2006 

 
   CPS Sample Estimates    Simultaneous Estimates       Two-Step Estimates  
St      CPS      varcps     BECCPS   S&NSE    varbeccps    Signal    VarSignal    SurE 
AL    2038673  3679861578   2022994   15679   3679900196   2064406   1677393936  -25733 
AK     308055    95009042    304142    3913     95009433    312698     34951744   -4643 
AZ    2719607  4940016080   2710402    9206   4940037094   2742883   1872639076  -23276 
AR    1335773   931402110   1275956   59817    931377568   1279302    386712225   56471 
CA   16568973 19713973309  16565410    3563  19713785649  16815860  19757394721 -246887 
CO    2417786  2594841766   2339775   78011   2594846962   2428008   1521468036  -10222 
CT    1728484  1184483549   1722675    5809   1184456506   1709671    577200625   18813 
DE     430941    71573417    441423  -10482     71573611    416387     27405225   14554 
DC     274617    37453913    286613  -11996     37453577    292316     25030009  -17699 
FL    8524044 15431076249   8506356   17688  15431008706   8415622   7395140025  108422 
GA    4418295  5567633630   4272046  146249   5567646053   4399394   2121523600   18901 
HI     637847   136983872    627152   10695    136983835    626053     78021889   11794 
ID     723132   314448720    688376   34756    314459782    701278    118766404   21854 
IL    6102978  8049548107   6106455   -3477   8049551901   6074746   4563948249   28232 
IN    3116148  4327930599   3050431   65717   4327891224   3051273   2294601604   64875 
IA    1588221   811523654   1532386   55835    811511184   1553633    377408329   34588 
KS    1400258   822429885   1375147   25111    822416077   1386284    295083684   13974 
KY    1811409  2988915564   1881199  -69790   2988889434   1856101    896403600  -44692 
LA    1862668  2733058634   1858502    4166   2733026297   1869696   1643572681   -7028 
ME     666650   186489439    639884   26766    186490357    660612     88717561    6038 
MD    2844012  2088972084   2754430   89582   2088966050   2817955    929579121   26057 
MA    3117108  5040669842   3256264 -139156   5040668540   3182095   1567684836  -64987 
MI    4664360  7475499516   4501730  162630   7475551167   4663248   3227944225    1112 
MN    2714723  2432139574   2810682  -95959   2432132934   2765644   1109889225  -50921 
MS    1205433  1491094340   1154127   51306   1491091754   1195684    725709721    9749 
MO    2858183  4227831478   2827705   30478   4227860017   2831368   2008832400   26815 
MT     470794   169403823    445284   25510    169404383    458981     45131524   11813 
NE     912968   256986524    944388  -31420    256987727    925837    120253156  -12869 
NV    1172640   694617481   1224297  -51657    694624454   1176211    238702500   -3571 
NH     712864   131084819    690423   22441    131084294    703637     54730404    9227 
NJ    4186935  4993905767   4199985  -13050   4993927587   4226153   2227462416  -39218 
NM     890814   616281651    854395   36419    616295929    877161    110250000   13653 
NY    9051645 16731126410   9024711   26934  16731098425   8935803  10327437376  115842 
NC    4125019  6143432242   4111840   13179   6143465977   4117926   2625537600    7093 
ND     350767    70109708    355857   -5090     70109997    332271     32821441   18496 
OH    5464068 10148532036   5561621  -97553  10148624788   5447573   2539353664   16495 
OK    1647282  1897191571   1585666   61616   1897214340   1628011    651985156   19271 
OR    1747033  1377585050   1732349   14684   1377595302   1737507    462121009    9526 
PA    5905700  6871837932   5902957    2743   6871921628   5879965   3680484889   25735 
RI     543188    89395889    524657   18531     89395489    540791     54405376    2397 
SC    1932052  2196475459   1931836     216   2196491622   1922926    548074921    9126 
SD     403813    70320546    400649    3164     70320508    401614     26081449    2199 
TN    2799013  4799435890   2840960  -41947   4799471524   2727933   1528731801   71080 
TX   10675536 22253332600  10753712  -78176  22253467249  10647979   7967704644   27557 
UT    1213992   810295800   1216001   -2010    810306676   1214375    356643225    -383 
VT     353711    40295008    341269   12442     40295305    340964     18198756   12747 
VA    3737584  5901222652   3816349  -78765   5901175918   3793403   1311453796  -55819 
WA    3143887  2853273738   3039191  104696   2853224390   3110833   1535307489   33054 
WV     777019   700320633    769822    7197    700338137    747780    268304400   29239 
WI    2914222  3758736287   2915293   -1072   3758743232   2845595   1782106225   68627 
WY     270567    42070126    273908   -3341     42069787    265398     15856324    5169 
Tot 141481487             140969680  511806              141118844               362643 
                            -511806                        -362643 
Note: CPS = , varcps =  in Section 3.1, BECCPS = CPS

ity ˆ ˆ( |CPS
p it itV Y Y ) BECCPS

ity  in Section 5.3, S&NSE = 

Estimate of CPS
itε  in Section 5.2, varbeccps =  in Section 7, Signal = Two-step estimate of 

, VarSignal = estimated model variance of Signal, SurE = Two-step estimate of .                 
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